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Launch Collision Probability

Gary Bollenbacher and James D. Guptiil

National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

Summary

This report analyzes the probability of a launch vehicle

colliding with one of the nearly 10 000 tracked objects orbiting

the Earth, given that an object on a near-collision course with

the launch vehicle has been identified. Knowledge of the

probability of collision throughout the launch window can be

used to avoid launching at times when the probability of

collision is unacceptably high. The analysis in this report

assumes that the positions of the orbiting objects and the launch
vehicle can be predicted as a function of time and therefore that

any tracked object which comes close to the launch vehicle can

be identified. The analysis further assumes that the position

uncertainty of the launch vehicle and the approaching space

object can be described with position covariance matrices.

With these and some additional simplifying assumptions, a

closed-form solution is developed using two approaches.

The solution shows that the probability of collision is a

function of position uncertainties, the size of the two potentially

colliding objects, and the nominal separation distance at the

point of closest approach. The impact of the simplifying

assumptions on the accuracy of the final result is assessed and

the application of the results to the Cassini mission, launched in

October 1997, is described. Other factors that affect the prob-

ability of collision are also discussed. Finally, the report offers

alternative approaches that can be used to evaluate the probabil-

ity of collision.

Introduction

Nearly 10 000 tracked objects are orbiting the Earth. These

objects encompass manned objects, active and decommis-

sioned satellites, spent rocket bodies, and debris. They range

from a few centimeters in diameter to the size of the MIR Space

Station. Their tracking and cataloging is the responsibility of

the U.S. Air Force 1st Command and Control Squadron (CACS)

at Cheyenne Mountain located in Colorado Springs, Colorado.
When a new satellite is launched, the launch vehicle with its

payload attached passes through an area of space where these

objects orbit. Although the object population density is low,

there always exists a small but finite probability of collision

between the launch vehicle and one or more space objects.

Despite the very low probability of collision, even this small

risk is unacceptable for some payloads, such as the Cassini

spacecraft.

Cassini was launched by a Titan IV/Centaur rocket on an

interplanetary trajectory at the window opening on October 15,

1997. The trajectory will take the Cassini spacecraft to Saturn

via two Venus, an Earth, and a Jupiter gravity assists. It is a one-

of-a kind, high-cost spacecraft equipped with three radioiso-

tope thermoelectric generators fueled by 32.7 kg of the

nonweapons grade isotope plutonium-238 dioxide. In addi-

tion, Cassini employs 117 lightweight radioisotope heater

units, each containing 2.7 g of the same plutonium dioxide

isotope. A collision with an orbiting space object would not

only cause a loss of mission but would also risk the release of

plutonium into the upper atmosphere.

To mitigate even the small risk of collision associated with

launching at an arbitrary time within the daily launch window,

a decision was made approximately I year before launch to

require a collision avoidance analysis (COLA) that would be

performed prior to the opening of each daily launch window.

The analysis would examine the entire daily launch window

and determine the launch times that resulted in an unacceptable

potential for collision with any tracked object. Launch would

not be attempted at any time for which an unacceptable poten-

tial for collision was identified. This mission assurance COLA,

as it is sometimes called, was in addition to the safety COLA

that is performed at the Eastern Range for all launches to protect

orbiting manned objects or objects capable of being manned.

Mission assurance COLA analyses are routinely conducted

by the Air Force for all Titan IV/Centaur launches. However,

prior to the Cassini mission, the existing capability for COLA

analyses was limited to the coast phases of a single, time-

invariant trajectory, which was inadequate for the Cassini

mission. The Cassini trajectory, unlike most Air Force mis-
sions, was a function of time into the window at which lifloff

occurred. Additionally, the Cassini trajectory had a very long

second Centaur burn, during which it passed through a region

of space densely populated by space objects. To remedy these

shortcomings, the Air Force developed new mission assurance

COLA analysis software to satisfy NASA-defined require-

ments. These requirements were to perform a seamless COLA

analysis from Titan stage II ignition up through geosynchro-

nous altitude, including powered and coast flight phases, while

fully accommodating the trajectory variability. The miss crite-

ria used in the Air Force COLA analysis were developed by
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NASAandwerebasedon the probability analysis described in

this report.
The variability of the Cassini trajectory is typical of inter-

planetary launches: it must link a nearly time-invariant inter-
planetary target (at the target planet) with a launch pad that is

moving in space primarily as a result of the Earth's rotation.
This is achieved by varying the direction of flight as a function

of time into the window. The initial direction of flight is called

the flight azimuth and is measured as the angle between the

direction of flight and true north. For the Cassini mission, the

variable flight azimuth was implemented as follows: The Titan

stage 0 (the first stage) was designed to fly a planar trajectory
of either 93 ° or 97 ° flight azimuth. The 93 ° flight azimuth was

available from window opening until 80 min into the window;

the 97 ° flight azimuth was allowed from 40 min into the
window until window close, 140 min after window opening.

Both azimuths were available between 40 and 80 min, select-

able on launch day. Following stage 0, Titan stages 1 and 2

would perform yaw steering to place the launch vehicle into the

astrodynamically correct flight plane. After jettisoning the

Titan stage 2, the Centaur performed two planar main engine

burns separated by a park-orbit coast. Both burn durations and

the park-orbit coast duration were a function of liftoff time.

Launch was planned to occur on the whole minute; thus, taking

into account the two possible launch azimuths between 40 and
80 min into the 140-rain launch window, there were 182

possible and different nominal launch trajectories for each day.

The software developed by the Air Force to perform COLA

analysis for Cassini consisted of three parts:

!. Trajectory generator: For a given launch day, the trajec-

tory generator creates a matrix of state vectors that accurately,

though not perfectly, describe the position and velocity of the
launch vehicle as a function of launch time, time into flight, and
launch azimuth. State vectors for each of the 182 nominal

trajectories required for each daily launch window are then

passed on to the conjunction analyzer.
2. Conjunction analyzer: The conjunction analyzer com-

pares the state vectors for each of the 182 trajectories for that

day with the trajectories of all cataloged space objects. Any

conjunction between the launch vehicle and a space object that

violates predetermined criteria is identified and appropriate

data are written to an output file that is then forwarded to the

postprocessor.
3. Postprocessor: The postprocessor manipulates the data in

the conjunction analyzer output file and generates easily read-

able summary charts that define unacceptable launch times.

Prior to the opening of the launch window, these charts are

distributed to the appropriate launch personnel.

NASA assumed the responsibility for specifying the criteria

that were used in the conjunction analyzer. The criteria estab-

lished a minimum clearance that was required between the
launch vehicle and any space object. If. for any given liftoff

time, the nominal launch vehicle trajectory passed a space

object with less than the minimum required clearance, launch

would not be attempted at that time in the window.

The miss distances computed by the conjunction analyzer are

based on nominal trajectories. Four factors may cause the

actual miss distances to differ substantially from the nominal

miss distances computed by the conjunction analyzer:

I. Launch vehicle position uncertainties: Launch vehicle

position errors, expressed as 3×3 position covariance matrices,

will generally be a function of time from liftoff.

2. Space objects position uncertainties: Position errors of

space objects are also given by 3)<3 position covariance matri-

ces that are generally a function of time since the last tracking.
3. Liftofftime errors: Errors in liftoff time occur because the

resumption of the count at 5 min prior to liftoff is a manual

operation and thus subject to operator reaction time. Errors in

miss distance are the result of performing the COLA analysis
for an assumed nominal liftoff time in the center of the tolerance

range although the actual liftoffmay occur earlier or later. Thus,

the launch vehicle may arrive at some point in space earlier or

later than nominal. With space objects traveling at rates up to
10 kin/s, these liftoff time errors can have a substantial effect on
actual miss distances.

4. Trajectory generation errors: As described above, the

software developed by the Air Force reconstructed nominal

launch vehicle trajectories. Although the methodology used by

the trajectory generator is very accurate, it does introduce some

small errors into the trajectories causing them to differ slightly

from the planned trajectory.

The 3x3 covariance matrices describing the launch vehicle

and the space object position uncertainties just discussed are

generally based on normal distributions and this will be assumed

throughout this report.

To establish appropriate miss criteria, NASA performed a

probability analysis that defined the relationship of the nominal

miss distance, the size of the objects, and the covariance

matrices with the probability of collision. The miss distance

requirement, based purely on probabilities, was then adjusted
to account for liftoff time errors. Although there are a number

of approaches that account for liftoff time errors, NASA

selected a sufficiently conservative but simple methodology.

This methodology justified omitting the small trajectory gen-
eration errors.

A final step in the establishment of miss criteria was to assess
the reduction in launch window that would be lost because of

miss criteria violations. A very conservative (large) miss crite-

rion reduces the probability of collision but increases the

number of unacceptable conjunctions, thereby potentially pre-

cluding launch during a significant portion of the launch

window. Other than illustrating the resultant impact on the

Cassini mission, the subject of launch availability will not be
addressed further.
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Thisreport describes the analysis performed to assess the

probability of collision. Two approaches are shown with each

one requiring simplifying assumptions. The first approach is

very intuitive and algebraically intensive. The second is math-

ematically more rigorous and offers the advantage of providing

an estimate of the error introduced by the simplifying assump-

tions. Necessary adjustments due to the lack of adequate

covariance data are also discussed. Finally, this report addresses
other factors that must be considered in the establishment of the

final miss criteria. The application of the results derived herein

to the Cassini mission are described in appendix A. The

symbols used are listed in appendix B.

Relative Motion Coordinate System

The probability analysis described in subsequent sections

uses a relative motion coordinate system (RMCS), which is a

reference system inertially fixed in space and defined at the

moment of closest approach of the launch vehicle to a space

object. As will be discussed in more detail later, the selection of

this system makes the probability of collision independent of

the z-direction, effectively reducing a three-dimensional prob-
lem to a two-dimensional one.

In the RMCS, the z-axis is in the direction of motion of one

object relative to the other, the y-axis passes through both

objects at the moment of closest approach, and the x-axis

completes the orthogonal system shown in figure 1. As shown

in the figure, the origin of the system is assumed to be at the

center of one of the two conjuncting objects.

To compute the probability of collision, it will be necessary
to transform the covariance matrices from inertial coordinates

into the RMCS. The transformation can easily be derived if it

_ y-axis

Minimum _ ,I
approach I - _ _-_o /

z-axis

Figure 1.--Relative motion coordinate system (RMCS).

is assumed that the trajectory of both the launch vehicle and the

conjuncting space object, while in proximity, can be repre-

sented as the motion along a straight line at a constant speed.

For the purpose of this analysis, objects can be considered to be

in proximity if there exists a probability of collision sufficiently

large to be of concern. For all practical purposes, using the

results derived in this report, probabilities of collision for

nominal separation distances greater than +100 km are negli-

gible. Approximating any trajectory as a straight line over a

distance of+100 km from an arbitrary point along that trajec-

tory is reasonable, for it can be shown that

1. For orbiting objects, a 200-km-long trajectory segment

will deviate from a straight line tangent to the trajectory at its

midpoint by no more than 0.8 km at the ends.

2. For the launch vehicle, based on an analysis of the Cassini

trajectory, the maximum deviation from a 200-km-long straight
line is 0.400 km.

Likewise, the assumption of constant velocity is valid, for it

can be shown that the velocity change over the same +100-km
distance is

1. Less than 0.35 percent for orbiting objects

2. Less than 1.90 percent under worst-case conditions for a

launch vehicle (based on an analysis of the Cassini trajectory);

this worst-case velocity change occurs during Titan stage 2

burn, the first part of the trajectory; during Centaur main engine

burns, the velocity change is less than 0.75 percent; and during

coast phases it is less than 0.2 percent over the same distance.

Assume that for a given lifioff time, the position and the

velocity of the launch vehicle and the space object can be

expressed as a function of time from liftoff, referred to as

mission elapsed time (MET). Given the assumption of linear

motion at constant speed, the position vectors of the two objects
as a function of time are written as

RLV =(al,, +bl.it)i+(a,.2 +bl.2t)j+(al.3 + bi.3t)k

RSO = (a2.1 + b2.lt)i + (a2.2 + b2.2t)j + (a2.3 + b2.3,)k

where RLV and Rso are the position vectors of the launch

vehicle and the space object in inertial coordinates at time t; aid
and bi.j are constants, and i,j, and k are orthogonal unit vectors
in the inertial coordinate frame.

The difference between the two vectors, AR = RSO- RLV, is
a vector that points from the launch vehicle to the space object

and is expressed as

AR=(zl+glt)i+('c2+Y2t)j+(T3+Y3t)k (1)
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where1:i = a2,i - aid and )'i = b2.i - bla"

The time derivative of AR then gives the velocity of one object

with respect to the other:

d(AR) = (?,l)i + 0,2)j + (_,3)k
dt

The direction of this vector defines the z-direction of the

RMCS. Note also that the relative velocity is along a fixed

direction and has a constant magnitude.

At the point of closest approach, the first time derivative of

the magnitude of AR must be zero:

dlARI = 0

The time at which this derivative is zero, to , is given by

--(171_I + 't2]t 2 + "173T3)
to = "_ 2

_'_ +_'2 +_/._

Substituting this value of to in equation (1) gives

ARdosest approach =(Zl + )'lt0)i + ('_2 + _/2t0)j+ ('_3 + _/3t0)k

or more simply

ARcloses! approach = (131)i + (132)J + (133)k

where the constants 13i= zi + Ti to. This vector defines the
direction of the y-axis of the RMCS.

The direction of the x-axis of the RMCS is simply the

crossproduct of ARcloses t approach and d(AR)/dr The compo-
nents of this vector will be designated c_l, 0,2, and ot3.

The three orthogonal vectors defined by the components (xi,

[3i, and ]'i are used to form the matrix

Lot, ot2 ]

53

M= 131 [32 133

_1 _2 )'3

where it is now assumed that the rows of the matrix have been

converted to unit magnitude.

Vectors and position covariance matrices are then easily
transformed from inertial coordinates to the RMCS as follows:

VRMCS = [M]Vlnertial (2)

CRMCS = [M][Clnertial ][M] T (3)

where V is any vector and C represents a 3x3 position covari-
ance matrix.

In practice the equations of motion will not normally be

expressed as equations of a straight line as assumed herein.

Instead, a numerical integrator propagates the trajectory of the

launch vehicle and the space object in small time increments. At

each time step, RLV, Rso, and AR will be computed. The
program will continuously monitor the separation distance AR

to determine the point at which the magnitude of AR is mini-

mum. The vector AR at that point defines the direction of the

RMCS y-axis. By taking the values of AR at two different points

in time near the point of closest approach, one can determine
the direction of the RMCS z-axis. From these data, the values

of ¢xi, 13i,and Yican be computed.

Probability of Collision

Approach 1

An expression for the probability of a launch vehicle colli-

sion with an orbiting space object is now derived. The assump-
tions are

1. An orbiting space object on a near-collision trajectory

with the launch vehicle has been identified, and based on

nominal trajectory propagation, the miss distance H has been

determined; both objects are finite in size.

2. The velocity vector of one object relative to the other is

constant (this is true if both objects move in a straight line at

constant velocity as shown in the section Relative Motion

Coordinate System).

3. A known position uncertainty of both objects exists

relative to their nominal positions and these uncertainties are

quantified by two 3x3 position covariance matrices.

4. The position errors are normally distributed; that is, covari-
ance matrices are based on a normal multivariate distribution.

5. The covariance matrices are constant over the time inter-

val when the two objects are in proximity.
6. The RMCS has been defined and all relevant quantities

have been transformed into the RMCS. (This can be done, for

example, by using equations (2) and (3).)

Even though the objects nominally approach one another no

closer than H, the assumption of a position uncertainty implies

that there exists some finite probability of collision. However,

as will be demonstrated, the collision probability is indepen-

dent of time and therefore of the position of the objects in the
RMCS z-direction. Furthermore, it will be shown that the

probability of collision does not depend on the position vari-
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ancesof eitherobject in the z-direction or on any of the

covariances that involve a component of z.

To establish the foregoing conclusions, consider the two

objects as seen looking at the x,y-plane of the RMCS along a

line parallel to the z-axis, as illustrated in figure 2. One of the

two objects (it does not matter which) is assumed centered at the

origin whereas the second object is nominally located on the

v-axis a distance H from the first. In the z-direction, the objects

are initially some distance apart. As object 2 moves with respect

to object 1, the objects will become progressively closer until

object 2 is at z = 0, at which time the nominal separation distance

is H. As object 2 continues to move in the z-direction, the

separation distance will again increase.

The definition of the RMCS ensures that the velocity of

object 2 relative to object 1 be entirely in the z-direction, with

the velocity components in both the x- and y-directions being

zero. Thus, the projection of the two objects into the x,y-plane

is unaltered by the motion of object 2 relative to object 1.

To determine whether or not the objects will collide, one need

only examine the location of the objects in the x,y-plane. When

referring to the location of the objects, it is understood that

reference is made to the position of just one point of each object

designated as the object's "center" (although it need not be the

true center). Given their finite sizes, both objects will also

occupy some space surrounding the center. It is clear that a

collision will result if any pan of the projection into the x,y-

plane of one object overlaps any part of the projection of the

other object. To be more specific, if the two objects are located

at their nominal position, as illustrated in figure 2, no collision

will result. However, there is some probability that object 1 and

object 2 are actually located at points x 1, Yl, and points x 2, Y2,

respectively. The objects will collide if the separation between

the two points x I, yj and x 2, 3'2 is less than the physical size of
the objects.

The first step in the probability analysis is to determine the

probability that object 1 is located at an arbitrary point x,y

without regard to its location in the z-direction. To this end, let

p t(x,y,z) be the three-dimensional probability density function

associated with object 1. The function Pl(x,y,z) is obtained by
using the 3×3 covariance matrix of object 1 transformed into the

RMCS. The two-dimensional probability function Pl(X,y) is

obtained by integrating the three-dimensional probability func-
tion p(x,y,z) from z = -_ to z = +oo:

_=+oo

pI(x,Y) = j'z Pl(X,V,z)dz

This integration can be performed under the assumption that the

covariance matrices are not a function of time over the period
of interest.

The function pl(x,y) is the density function associated with

the marginal distribution ofpl(x,y,z). By virtue of the normal

IRefer to Theorem 2.4.3, p. 31.

H

L_Y f-- Probability

density contour

i"-- Nominal center of object 2

x2, Y2 Possible
locations

- of objects
1 and 2

1-- Nominal center of object 1
/

Figure 2.--Projection of two conjuncting objects into
x, y-plane.

distribution assumption, it can be shown from reference 11 that

the covariance matrix for the marginal distribution Pl (x,y) is

obtained from the original 3×3 covariance matrix by deleting

the row and column corresponding to the z-direction to effec-

tively remove the z-variance and the covariances involving

position uncertainties in the z-direction. Thus, the marginal

distribution pl(x,y) is only a function of variances and covari-

ances involving x and y. When object I is located at point x 1,Yt,
the probability density is then given by pl(xt,yl).

Similarly, when object 2 is located at point x,y, the probabil-

ity density is given by p2(x,y), where the two-dimensional
probability density of object 2 is obtained by using the three-

dimensional covariance matrix for object 2 with the row and

column corresponding to z deleted.

Return now to figure 2 and let the center of object I be located

at some point x 1,yl. If the center of object 2 is also located at

point x l,y], the two objects will collide. However, given the
finite size of both objects, they will also collide if the center of

object 2 is some distance removed from object 1. In fact, there

are many points where the center of object 2 can be located such

that a collision of the two objects will result. For example,
consider the case in which the cross-sectional area of both

objects when projected in the x,y-plane is a circle, as illustrated

in figure 3. The first object is centered at x l,yl. If the center of
the second object is anywhere within the dashed circle, the
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Integrate probability

density function of
object 2 over region

R* bounded by .._ ...
this circle _ ,s _"

\\//
/

/
/
!
I
I

\
\

\
%

%

Object 2
/

m

_" ,, //

\ /

.=._- 4' _ Object 1

Figure 3.--Illustration of region R* for objects with circular
cross sections.

two objects will collide. The two-dimensional region bounded

by the dashed circle is designated R*, the area of which is A*.

In actuality, the cross-sectional areas presented to the x,

y-plane will not be circles. Furthermore, the shape, size, and

orientation of the cross-sectional areas will generally not be

known. Nevertheless, there will exist for any two objects a
region R* such that if the center of object 2 is within that region,
a collision will result.

Thus, given probability density Pl when object 1 is located at

xt,y I, the collision probability density is

p=pl(xl,yl)Ip2(x,y)dA (4)
R*

where the integration is carried out over the region R*.

At this point an assumption will be made to greatly simplify

the remainder of the derivation. This assumption will have the

effect of degrading the accuracy of the final result, particularly
for large values of A*. This effect will be quantified in a later

section of this report. The simplifying assumption is to let the

probability density function P2(x,y) at an arbitrary point x,y be
constant over the region R* and be equal to its value at point

xl,Y I, that is

P2( x, Y)= P2 (Xl, Yl)

for all points x,y within the region R*. With this assumption,

given that object 1 is located at xpy l, the collision probability
density given in equation (4) can be rewritten as

P= Pc = PI(xI,YI)P2(Xl,Yl) A*

To obtain the overall probability of collision, integrate over

all possible locations of object 1, with the resultant probability

of collision being

_" _"1 ="k°° I'Xl =4"<_

PC = J_, =__J_,=_Pcdxl d Yl

* i'Yl =+ootX 1=+o0 r /

PC = A J:,,=__J=,=_tp,_x,,y,)p2(_,,y,)]dx, dy,

(5)

Since the two covariance matrices are assumed to be known,

it is possible to expand the probability density functions and

explicitly perform the two integrations to arrive at a closed-

form solution for the probability of collision. This procedure is
now described.

Assume that the two-dimensional covariance matrix for

object i is given by

where Ol and v I are the 1-sigma position uncertainties along the

x- and y-directions, respectively, and Pl is the correlation
between the x- and y-errors. This matrix is the original 3x3

covariance matrix for object 1 in the RMCS with the row and

column corresponding to the z-direction deleted. Similarly, let

E

O_ P2G2V2
-)

p,_o2V._ V_

be the covariance matrix for object 2. The corresponding

probability density functions are then given by

1

Pl = _,_27¢G1VI

and

P2 =

-, )[ 2 ]xe - (,/o,) -2o,(,/o,

2RO2v2

xe20_p _i{(x/o2)2-2o2(xlo2){(y-H)/v 2]+[(y-H)/v,_]2}
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Theseequationsassumethatthedistributionsassociatedwith
Pl and P2 have means of (0,0) and (0,H), respectively.

When these expressions for the probability density function

are substituted into equation (5) and the indicated multiplica-

tion carried out, the resultant expression can then be integrated
by successively applying the following integration formula
(ref. 2) 2

f+%-(ax2+bx+,,)d/7 (b2-4,,,.),4a
J__ X = _-_- e

(6)

First the integration formula is applied to the inner integration

with respect to x I to obtain

PC = A* _ _fY' =+"°F (b2-4b'b3)/40112_:2 Vgay,=-oo Le " d Yl

where

al 2(1 "_ "_ 2- P_)OiVl

I

a2 211 "_\ -_ ._- p_)o.__v_

b I = al v2 + a2 v2

b2 =-2[alPlo-lVlYl + a2920-2v2(y I - H)]

: a:o._(y,-H)_-b3 = alo'l Yl +

where

2[ 9\ 9 '_ 21 2)a2v2+ala2 [ 9 2 9 2al [l_Pi-]oi.vi-+a2/l_P2 2 2 _oi.v2+o_v I _2PlP2OlO.2VlV2)

2 21. 2)+°,.,4
F1 =(Ho") )2 a2 v2 [I-p2 -

" " 2 3

Again, applying equation (6) to the integration with respect to

Yl yields

Pc A* _ f_- f_- (_2-4FtFa}/4F'
V-g, t-g,

Making obvious substitutions and after a great deal of tedious
algebra, the result is

PC

A 1

2 9 9

2/I: \/(0._ +o.2)(Vi. + VS)_(plo.lVl +p20.2V2)2

"_ "_ " "_ 2
× e-0-5{io_+o_)/[(o_+< )(_r+_._)-(p,o,_,+p:,,.._2)"]}n

(7)

This can be rewritten as

PC = A* _ f_-_g fY_=+_Fe-i_Y_+F2Y'+F3)ldv

2=_ Vb,0;.,:_L J-,

This can be simplified by defining a new covariance matrix Z,
which is simply the sum of the two individual covariance
matrices:

--I&o,-,l+I020 02v2 Vl2 J LP2°2v2 v22 j (8)

and substituting the new covariance terms into equation (7)

2Table 15, formula 15.75, p. 98.
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Pc _

A 1

2_ _(OT)2(VT)2 (pTOTVT)2

2 2 2 2 2

or

Pc _

2re OTVT I__p2T e

One more simplification is possible by letting

Veq v = VT_

where Veq v is an equivalent position error in they-direction with
zero correlation, and the final result then becomes

(A* ff I _ -0.5(H2/v_,_v)

e (9)

The next section will provide an alternative approach for

deriving equation (9), which additionally yields a basis for

estimating the errors inherent in equation (9) because of the

assumption made during its derivation.

Approach 2

This section provides another way to model the probability of

collision to utilize some of the power of a rigorous mathemati-

cal approach and to present the basis on which to evaluate the

effect of the simplifying assumption highlighted in approach 1.

In particular, for each object, a vector of three random variables
associated with the x,y,z-coordinates of the object in the RMCS
will be defined. These variables are then combined and trans-

formed (using the eigenvalues and eigenvectors of the covari-

ance matrix) to produce two random variables that are

independent and are associated with one-dimensional standard

normal distributions (with means 0 and variances 1).
Because of the mathematical formalism used in this section,

it is useful to review the definition of random variable and to see

how the definition is applied to near-collision trajectories.
Random variable is defined (ref. 3) 3 as a mapping (or function)

from an event space to a number on the number line. A classical

example is rolling a pair of dice where the event is the roll itself

(i.e., one roll out of the event space of all possible rolls). The

random variable provides a recipe for extracting a number from

any such event. In the case of rolling dice, the recipe (or

mapping) involves counting the dots facing up on the two dice.

In this paper, the event space includes all possible trajectories
(i.e., those related to all possible position uncertainties) of the

two objects (launch vehicle and orbiting object) associated with

one identified near-collision trajectory. From this event space,

the actual positions of the two objects at the moment of

nominally closest approach can be extracted. For example, one

mapping (random variable) can be defined from the event space

to the real number line by identifying the x-coordinate (in the

RMCS) of the location of object 1 at the time of closest

approach. Similarly, five more mappings can be defined for the

y- and z-coordinates of object I and for all three coordinates of

object 2. To distinguish between real numbers and random

variables, this section uses upper case letters for random

variables, upper case letters with arrows for vectors (or ordered

sets) of random variables, and lower case letters for real
numbers.

The same six assumptions listed at the beginning of the

section Approach I are also made here. Let the random variable

/_ map a trajectory event to the ordered triple of coordinates

associated with the location in the RMCS of the center of object

1 at the moment of nominally closest approach. Similarly, let

the random variable/3map to the coordinates of the location of
the center of object 2. Then, E and/_ are distributed as trivariate

normal distributions with means (0,0,0) and (0,H,O) and, say,

covariances _(E3) and _(F3), respectively.

In this approach, the two three-dimensional random vari-

ables are combined first and then a marginal distribution is

extracted. In a way similar to the earlier discussion but in
reference to all three dimensions, a collision is defined to occur

when the two objects are positioned such that any part of one

object occupies the same volume as any part of the other object.
In particular, the location of the two objects relative to each

other completely determines whether or not a collision occurs

irrespective of where the pair of objects is located in space.
(Note this differs from the first approach for modeling the

probability of collision wherein the location of one object was

fixed at some (albeit arbitrary) point, the coordinates of which

are later used as a dummy variable of integration.) Then a three-

dimensional region S* can be defined based on the relative

positions of the two objects at the time of nominally closest

approach such that whenever the relative positions are "'near
enough to each other" to be inside S*, the two objects will

collide. To define the relative location of the two objects with

respect to each other, subtract the two position vectors associ-

ated with the two objects. Moreover, define a mapping from a

trajectory event to a set of three coordinates in the RMCS of this
relative location vector by a new random variable (_ =/_-/_.

Note that this effectively reduces the dimensionality of the

problem from six (three coordinates for each of two objects) to
three components of the relative position vector. Although G

3Definition I, p. 53.
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mapseventsto a somewhat different vector space from that of

the other two random variables, its components are referred to

as X,Y,Z. Note that the region of collision S* is centered at the

origin of the G-space (i.e., when E = F). In a manner similar

to the discussion in the first approach but now in three dimen-

sions, consider a case in which both objects are spheres• The
region S* is also a sphere centered at the origin with a radius

equal to the sum of the radii of the two objects• Clearly, the
projection of S* into the x,y-plane is just a circle. In particular,

it is the region R* identified in the first approach but translated

from xl,Y!, to the origin of the G-space. This relationship
between S and R* will hold no matter what the shapes of the

• * R*two objects. Call this new reglonR 0, which is the same as
but is translated to the origin of G-space. The area ofR 0 is A*
as before.

Now, assume that /_ and /3are independent; that is, assume

that information about the location of one object does not

provide information about the location of the other object. With
the independence assumption, it can be shown (ref. 1)4 that G
is distributed as a trivariate normal random variable with mean

(0,H,0) and covariance Z (3) = Z_)'_ + Et_).'_

Next, recall that the z-direction is parallel to the relative

velocity vector of the objects; thus, the variance in the

z-direction corresponds to delays in the arrival of or the prema-

ture arrival of object 1 relative to object 2 at some point on the

x,y-plane passing through the origin of the RMCS. The desire
is to determine the probability of collision irrespective of the

time of collision (i.e., a collision occurs whether it happens

early or late in the near-collision trajectory). Thus, the marginal
distribution of G is taken by integrating out the random variable
associated with movement in the z-direction. The covariance of

this marginal distribution is obtained by deleting the row and
column associated with movement in the z-direction (ref. 1)5.

Thus, using the notation given in equation (8) of the first

approach, the associated random variable is a bivariate normal
with mean (0,H) and covariance matrix

LPTOTVT V2 J

Note that the variances do not address lifloff time errors, which

will be discussed in the section Application of Results to

Collision Avoidance (COLA) Analysis.

The probability of collision can be found by integrating the

two-dimensional probability density function of this bivariate

normal distribution pxv(x,y), for example, over the region R 0
centered at the origin as noted earlier:

4Refer to Theorem 2.4.4, p. 31. In Anderson' s notation, take X to be the 6x6

covariance matrix composed of Z_ ) as the upper left submatrix, Z__) in the

lower right, and two 3x3 zero matrices elsewhere (due to the independence
of/_ and F), take !a to be (0,0,0,0,H,0), and take D to be the 3><6 matrix

[-1/], where I is the 3x3 identity matrix.

5Refer to Theorem 2.4.3, p. 31.

P = _ pXy(x, y)d A

where pxy(x,y) is the probability density function associated
with Y. and is given by

l

pxy( x, Y)= 2rtOTVT 5/1-p 2

x e 2(,_p _.i{(xmr)2- 2pr(X/Or )[(y_n)/Vr ]+[(y_ H)/VT ]:}

For comparison, consider applying the simplifying assump-
tion taken in the first approach. In t_-space the equivalent

assumption is that the probability density is constant over the

region of integration R 0 centered at the origin and is equal to its

value at this origin. Substituting (0,0) for (x,y), the integral
reduces to

PC : f Pxy(O,O) dA

Ro

= pxr(O,o)
Rt;

1
=A

21_TVT l_--p _

-0
--e

or simplifying,

PC _ 2x J_ t_TVeq v ) e
(9)

which is the same result obtained previously.

This same formula can also be reproduced without the

assumption that the probability density is constant in the region

of integration; rather, it can be assumed that

(a) The region R 0 is a rectangle whose sides are parallel to
the major and minor axes of the probability density contour
associated with the covariance matrix _.

(b) A Taylor series expansion can be performed on the
resultant expression with only the first term retained.

The remainder of this section is devoted to deriving a more

precise formula for the rectangular region and then approximat-

ing the more precise formula with the first term in its Taylor

expansion. A following section will examine the error resulting

from dropping all but the first term of the Taylor expansion.

NASA/TP-- 1999-208852 9



Startingin G-space and using a standard technique (ref. 4) 6,

the random variables X and Y can be transformed into two

independent standard normal random variables, U and V.

This technique depends on several facts, one of which is that

the covariance matrix is symmetric. Another is that for any

symmetric matrix, an orthonormal matrix N exists such that
NTT_,N= K where K is a diagonal matrix with elements that are

the (real) eigenvalues (ref. 5) 7of E. Using the positive definite-
ness of the covariance matrix (ref. 1)8, the eigenvalues are

positive (ref. 5) 9 so their square roots are real. Thus, a real

diagonal matrix D can be formed, the elements of which are the

square roots of the eigenvalues of E. In particular, U and V are

independent standard normal random variables if they are
defined by the transformation of variables (ref. 4) 10

io]) (10)

where N is an orthonormal matrix with columns that are the

normalized eigenvectors of E, and D is a diagonal matrix with

elements that are the square roots of the corresponding eigen-

values. The variables U and V resulting from this transforma-

tion are dimensionless. Using this transformation, the probability
of collision becomes

where

P= f Pu(U)pv(v)dudv (lla)
R'

1 _0.5u 2
eu(u) = (lib)

-qzn

] _0.5v 2

pV(v) = - n-ne (llc)

and R" is the region obtained by translating the region R 0 by
(0, -H), rotating it by N T, and rescaling it by D -I .Note here that

the eigenvalues are given by

translation and rotation; however, it is changed by a factor of

[ D-1 I during rescaling. Thus, using the eigenvalues defined

above, the area A" of the transformed region R" after a little

algebra, becomes

A' = A*ID-! I

A*

• 1

=A ___arVr P_

The derivation up to now is applicable to a region R 0 of any

size or shape. However, the integration indicated in equation

(11 a) is difficult to carry out analytically for an arbitrarily

shaped region. To enable the evaluation of the integral, the

above derivation is now applied to a rectangular-shaped region
centered at the origin of the (_-space in the RMCS with sides

parallel to the major and minor axes of the elliptical density
contours associated with the eovariance matrix, as illustrated in

figure 4.
Here, 0 is the angle of orientation of both the rectangle and

the elliptical density contour with respect to the x-axis. In the

following, it is assumed that -7o'4 < 0 < n/4; L* is the length of

the sides of the rectangular R 0 which are oriented in the
direction of 0; and W* is the length of the other sides. Note that

L* may or may not be larger than W*.

Probability

density contour "-7
/

Y

0

, , 2)2222O_-+V_-± 0 2-v T +4Pr_rV T
_,_: = (12)

2

Since matrix multiplication by the two-dimensional orthonor-

mal matrix N simply rotates a region without changing its size,
the area A* of the original region is unmodified under both

6Section 3. l, p. 49.

7Section 23, p. 26.

8Section 2.3, p. 14.

9Section 26, p. 28.

l°Section 3.1, p. 49.

0

x

Figure 4.--Rectangular region R(_in x, y-plane.
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It isfurtherassumedthat02>v3,inwhichcasethefollow-
ingaretrue:

(1)0definestheorientationofthemajoraxisofthedensity
contourwithrespecttothex-axis.

(2) L* is defined in direction 0 (i.e., parallel to the major axis

of the density contour).

(3) _,+ is associated with the axis of the density contour that
lies in the 0-direction (i.e., the major axis).

If v 2 > 0 3, then replace"major" with"minor" in the discus-

sion below, since the following are true:

(1) 0 defines the orientation of the minor axis of the density

contour with respect to the x-axis.
(2) L* is defined in direction 0 (i,e., parallel to the minor axis

of the density contour).

(3) _.+ is to be associated with the axis of the density contour
that lies in the 0-direction (i.e., the minor axis), in which case

the + in equation (12) for the eigenvalues must be replaced
with ¥.

The angle 0 is given by the following relationship, which can

be derived from the definition of the contours of the density

function PxY:

tan 20 - 2PTOTVT
o3-v3 (13)

Use this equation to write the eigenvalues as

_.+ _ O_ +v, ± x]l + tan 2 20
2 2

_ ,4 +v3 -,4
2 2 cos 20

(14)

Substituting the expressions for the eigenvalues given in equa-

tion (14) into the characteristic (or eigen-) equation will provide

the eigenvectors. Using the eigenvectors as the columns of the

matrix N and using equation (13) along with a few trigonometric

identities, the matrix N can be simplified to obtain

N = rcoso -sin o]

LsinO cosO.]

Then after translating the region R_ by (0,-H) and rotating by
N T the rectangle will have sides parallel to the u- and v-axes.

The rescaled region R" of length L" and W" centered at a point

we shall call (u',v') is illustrated in figure 5. Note that

- H (L+)"0"5sin0 ,.

_L

v¢ = w*(k_)-°-s_

_- = L' =L*(_..) -0"5 =

/---R'
/

Figure 5.--Rectangular region R' in u, v-plane.

L'W' = A"

!
=A

OTVT --P'r

L'W*

OTVT --DT"

(15)

Note, also, that neither the translation nor the rotation of R 0

described above will change its dimensions, but rescaling will

modify the dimension parallel to the u-axis by the first element

of D -1 and the dimension parallel to the v-axis by the second
element of D -1. In particular,

L
L' = _ (16a)

(16b)

It should also be pointed out that _ and _ are the lengths

of the semimajor and semiminor (or semiminor and semimajor)

axes of a particular probability density contour associated with
the covariance matrix E. Thus, L" and W" are nondimensional

quantities, the ratios of the lengths of the sides of the rectangular

region R 0 to the lengths of the semimajor and semiminor axes

of a probability density contour of Z.

NASAFFP--1999-208852 11



Theprobabilityofcollisionforthisregioncannowbeeasily
tound.SinceU and V are independent and the region of integra-

tion is a rectangle whose sides are parallel to the u- and v-axes,

the required probability is the product of two one-dimensional

probabilities. Each of these probabilities, in turn, is obtained by

taking the difference of their cumulative distribution functions

evaluated at the upper and lower limits of the region. In

particular,

P=[Pu(u"+0.5L')-Pu(u'-O.5L')]

× [Pv(v'+0.5W')-Pv(v'-05W')] (17)

where Pu(u) and Pv(v) are the one-dimensional cumulative
distribution functions for the standard normal distribution

given by

p_(u)= j_ pu(_')dv

Pv(v) = _2 pv(y)dy (18)

where Pu and Pv are the one-dimensional standard normal
density functions defined in equations (1 lb) and (1 lc).

Noting that commercial software is available for quickly

calculating the one-dimensional cumulative distribution func-

tion for a standard normal distribution and that the simplifying

assumption highlighted in the first approach was not taken to

derive this formula for the probability of collision, it might

seem desirable to use this formula directly. However, recall that

this formula is only good for the particular circumstance in

which the region R 0 is a rectangle with sides parallel to the
major and minor axes of the probability contours associated
with Z.

In the final portion of this section, the first term of the Taylor

expansion of the formula for P given in equation (17) will be

examined and rewritten to obtain again the formula derived in

the first approach (eq. (9)) for calculating the probability of

collision. In the next section, the remainder term of the Taylor

expansion will be used to compare these two approaches.

Consider the first multiplicand in equation (17). Expanding

Pu in a Taylor series about the point u" and evaluating at
u" + 0.5L" and u" - 0.5L" gives

[ (0.5,:)
U'

+1 d2 pu

_--£U-2° (o.5t')2+.,.
(19b)

Subtracting the two Taylor series gives

eu(u'+O.St')-pv(u'-o.5t')= dPu (t')+..
"_U u _

Proceeding in a similar way for the second multiplicand, drop-

ping higher order terms, and substituting into equation (17)

provides

k ou lu=u') k, av Iv=v')
(20)

or

e =L'w'pu(u')pv(v')

since the derivative of the cumulative distribution function is

just the probability density function (ref. 3) L1.This is the same

result one would obtain by integrating the probability density

functions Pu and Pv over the rectangle R" and by assuming that
the probability density functions are constant at their value at

u',v', which is consistent with the assumption made in the first

approach.

Substituting u" and v" into the probability density functions
given by equations (1 l b) and (11 c) and using the relationship

between L'W" and L'W* of equation (15)

L'w* -o.s(_'_+v"2)p= 1 e (21)

6TVT _ 2_

Next, u" and v" are replaced by the components of the original

covariance matrix Z. To find (u', v') using the transformation
of variables from the X,Y-space to the U,V-space given earlier

by equation (10), translate the center of the region R 0 (i.e., the
origin) by (0,-H), rotate by N T and rescale by D -! to obtain

P_,(u'+o.5c)=eu(u')+dd-_U(o.5L')
U'

+/d 2 PU
2! du 2 u,(0"5L')2 +""

(19a)

l-sin____O01
(22)

11Theorem 2, p. 61.
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Thus

Using equation (14) for the eigenvalues, the numerator

2 Substituting in thereduces, after some algebra, to simply t_T.
original expressions for the eigenvalues, equation (12), in the

denominator, after a little more algebra, gives

u '2 + v '2 = H 2

Finally, substituting the above into equation (21) gives

L'W*
P= e

_11 " 2reOTV T --p_

k 2n J_ (ITVeq v J

The last term will be recognized as the value of Pc derived
previously, leading to the conclusion that

A* 1 4) 5 H 2 v_._]
p=pc=(__)(__)e "'( / ._,

_, 2_ )(, CTVeq v j
(23)

ThUS, PC is the first term of the Taylor series expansion of the
more precise formula given in equation (17) when applied to a

rectangular region R 0"

As demonstrated in this and in the previous section, the

probability of collision shown in equations (9) and (23) applies
to either ( 1) an arbitrarily shaped region of area A*, provided

that one can assume that pc is constant over the region R *, or (2)
a rectangular region of area A* with its sides aligned with the

major and minor axes of the error ellipsoids, provided that one

can assume that the higher order terms of the Taylor expansion

are negligible. The next section evaluates the higher order
terms of the Taylor series expansion to arrive at an estimate of

the error introduced in the equation for Pc by the simplifying

assumptions made in approaches 1 and 2.

Accuracy of Probability Equation

This section provides information to clarify the magnitude

of the error associated with neglecting the higher order terms of

the Taylor series expansion. This error is the same as that which

results from assuming a constant probability density over the

region R*, R o, or R'. In general this error will be a function of
the shape and orientation of the region. However, even though

equation (9) is valid for an arbitrarily shaped region, the error

will be examined for the case of a rectangular region R 0 with

sides parallel to the major and minor axes of the probability

contours. In particular, the more precise formula of equa-

tion (17) derived in approach 2 is approximated by a Taylor

expansion, and the remainder terms are examined. The remain-

der terms are shown to depend on the area A" of the regions R o
or e*.

The more precise formula derived in approach 2 is

P: [Pu(u'+0.SL')-Pu(u'-0.SL')]

×[Pv(v"+0.SW')-Pv(v'- 0.SW')] (17)

where, from equations (16) and (22),

* W*
u'= sin0 v'= _ cos0 L'= L W'-H _' -H--"

and H is the nominal miss distance between the orbiting space

object and the launch vehicle at the moment of closest ap-

proach, L* and 14/*are the lengths of the rectangular region R 0,

and Pu(u) and Pv(v) are the one-dimensional cumulative
distribution functions for the standard normal distribution

given in equation (18).

As before, consider a series representation of the first multi-

plicand in the formula above, but this time focus on the higher

order terms. First, expanding PU in a Taylor series about the

point u" and evaluating at u" + 0.5L" and u'- 0.5L" gives (as

before in equation (19))

eu(u'+0.SL')= eu(u')

dPu (0.5L,)+l d2pU (0.5L') 2
+ d u u' 2! du- u' + R3+

Pu(u'-O.5L') = PU (u')

dP--u (0.5L')+ ld2PU] (0.5L') 2 + R__

d u u' 2! du _ [u'

where using Lagrange's form of the remainder (ref. 2) t2 gives

1 d3Pu

R3+=_ dT_-ul(0.5L')3, forsomefi _ u'_<fi_<u'+0.5L"

12Table 20, formulas 20.1 and 20.2, p. 110.
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1d3pU
R_-= 3! _ua (0'5U)3' forsomea _ u'-O.SL'<_a<_u"

Subtracting the two truncated Taylor series gives

P.(u'+ 0.5L')- Pv(u'- 0.SL')= aPuI
i,,.(L')+Ru

where R U = R3+ - R3_.

To estimate the remainder term R U, note that

leul- le +l+lR,-I

1 Mlf0.5Lq3 + 1 M_ (0.5L,)3
3! "" " 3!

1 M
=-4-if( + +M-)(L') 3

where M÷ and M_ are defined such that

Id3 Pu i < M+ Vu _ u'
du 3 1_ < u < u'+0.5L'

d3 Pu < u'

du 3 _M_ Vu _ -0.SL'<_u<u'

To estimate M÷ and M_, recall that the derivative of Pu is the

probability density function PU"Thus,

d2 Pu = dPu

du 2 du

d3 PU u2 - 1 e...0.Su2
du 3 =_

The third derivative is shown in figure 6. Note that the

maximum of the absolute value of the third derivative of Pu
occurs at u = 0 and has a value of (2n) -°.5, or 0.399. Using this

conservative value for M+ and M_ will be sufficient for the

discussion here. (If the entire interval of length L" centered at
u" lies more than four units away from the origin, the values of

M+ and M_ and the error terms become very much smaller.)

Substituting (2r0 -°'5 for M+ and M gives

-4 --3 -2 __j_l 2 3 4

Figure 6.--Third derivative of standard normal cumulative

distribution function, PU.

IRuI <__ L "3 (24)

The same procedure can be carried out for the second multipli-
cand in equation (17) to obtain

Pv(v, +O.5W,)_Pv(v,_O.SW,)= dPv (W,)+ Rv
dv v'

where

IRvl---2@2 W'3

Substituting into equation (17) produces

(25)

t,.-d--_uu' )t. d v Iv'

=(dPvl )( dPv ,]L'W"
t. du lu'J[, dv v )

+(dPvI ]RuW, +( dPU[ ]RvL, + RuRv
t. dv Iv'.) t. du lu')

This equation can be reduced to

P= Pc+ RT

14 NASA/TP--1999-208852



byrecognizingthatthefirsttermisPc from equations (20) and
(23), where RTConsists of the three remainder terms and can be

bounded for any u', v', L', and W" by noting that

deul < 1 dP V < 1
du [-_; dv -_ Vu, v (26)

Then

,.., v. .v,
1 1 i I L,W, 3< L'3W'+

- _ 24 2_/_ 2af_ 24 2-f_

-o 1 ! L, 3W,3
24 2-J_- 24 2_

I (L'W')L'2 (L'W')W'248_

3 (27)
1 l_zrc

To examine these remainder terms, note that the area of the

probability density contour defined by

(28)

can be written as

ThUS,

A ° = _-+-+_-- (29)

L'W* A*

L'W'= _+ __ =hA----6- (30)

That is, L'W" is proportional to the ratio of the area A* of the

region R* to the area of the probability density contour defined

by equation (28). Finally, substituting into equation (27),

IRT[< I_LA*/L,2 +W,2] + _2 (A*] 3
48 m °t ! 1--_7 _)

or

1 A*fL .2 W .2") g2 (A*'] 3

IRTi< 4"--8A-''6" t _'--'_+ _'-'_--J+li 5"--'-2[ A---6-)
(31)

Equation (31 ) provides an upper bound for the absolute value

of the error produced by any one of the following:

( 1 ) Truncating the Taylor series expansion of equation (17)

(2) Assuming a constant probability density PuPv whose
value is taken at the center of R" (see eq. (20))

(3) Assuming a constant probability density function P2
whose value is taken at the center of R* (see eq. (4))

In all cases, the bound is valid only when the regions R" (or R0)
or R* are rectangular and properly aligned.

The following observations can be made regarding equation

(3 I) for the error term IR/4:

(i) All terms are functions of the ratio of the physical size of

the two colliding objects to the size of the probability density
contour associated with the covariance matrix X.

(2) For cases in which the two terms inside the first parenthe-

ses are approximately equal, this sum could be replaced with
twice L'W" or by applying equation (30), with 2rt times the ratio

of the areas A * to A °, thus providing an error bound that depends

only on this area ratio.

(3) The error bound is not a function of the separation

distance H because of the conservative assumptions made in the

derivation of IR/4 in equations (24) to (26). In particular,

eliminating the dependency of IR/4 on u" and v" removed the
dependency on H.

(4) Terms A ° and _,_ (or _,+ if v2 > O2T) are zero when the
correlation PT of the covariance matrix Y becomes !.0. In this

case, the bound for the error R T becomes infinite. However, as

is shown in appendix A, for values of PT < 0.95, the error R T is
very small.

In addition, it can be shown that if the rectangular region R 0
is oriented such that the long side of the rectangle is parallel to
the minor axis of the density contour, the error bound will be

larger than that obtained if the long side is parallel to the major

axis of the density contour. This alignment occurs if L* < IV*

and _.+ > _,_, or if L* > W* and k+ < _.

The bound for the remainder term can be rewritten in terms

of the elements ofZ (t_T, v T, and PT) to obtain
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Note that if PT is 1, then Veq v = 0.
One final note in this section should be made. The estimate for

the remainder term given herein can be quite conservative. A
better estimate can sometimes be obtained when the values of

u ".L', v ",and W" allow utilizing less conservative estimates for

d Pu , d Pv
IRuI, IRvl , d u and

In these cases, the error becomes a function of the minimum

separation distance H.

Discussion of Results

Using two different approaches has shown that the probabil-

ity of collision of two objects is given by

:¢A'7 ' '
PC _,2n)_._TVeqva

(9)

where

Veqv = VT_fl-- PT

and the variables are defined as follows:

vT combined position error in y-direction

t_T combined position error in x-direction

PT correlation of combined covariance matrix

A* area of a composite region, centered at one object such that

if center of second object is within that region, a collision
results

H nominal separation distance of two objects at point of

closest approach

The area A* needs some additional explanation. To begin
with, A* is a function of the actual cross-sectional areas and the

shape of the colliding objects as they are projected into the

x,y-plane, which in turn is a function of the actual object sizes
and their orientations relative to the RMCS reference frame. In

practice, the actual object sizes are not always known and

certainly the orientations of the objects are unknown. At best,

what is known is the radar cross section of the objects and the

object type (satellite, rocket body, or debris) from which some

information about the object size can be deduced. However,

even if the sizes and shapes of the objects in the x,y-plane are

known, there remains the question of how to compute A*. To

shed some light on this, consider first the situation in which

both objects present a circular cross section to the x,y-plane as

shown in figure 3. If the circular cross-sections are of area

A 1 and A 2 and of radius r I and r2, respectively, then

A" +r2)"

= A l + A 2 + 2_IA 2

Similarly, if both objects project as squares with areas A 1 and

A 2 and sides of length lI and/2, respectively, then

A* = (/1 +12) 2

= A 1+ A 2 + 2A.fA_IA2

For rectangles, the situation is slightly more complicated.

Consider two rectangles whose sides are parallel to the x- and

y-axes. Let al and a 2be the lengths of the two rectangles in the

x-direction and b I and b2 be the lengths of the rectangles in the
y-direction. Further let

Ai=(al)(bl)

=

al

kI -

a_

k2 = ._---
b2
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Then

The minimum value of the factor (k I + k2)//ka_lk_ is 2, which

is the case when k I = k2; that is, when the two rectangles have

the same aspect ratio. A special case of this is when k I = k 2 = I,
in which both rectangles are squares. When the two constants

are not equal, the above factor is mathematically unbounded. In

reality, assuming plausible aspect ratios, the factor can easily

become much larger than 2. Thus, for two rectangles at least, it

is seen that A* is always larger than (a/-_l + _2) 2 , which is

always larger than the sum of the two areas and depending on

the shapes of the two rectangles, can become quite large.
Similar calculations for other simple shapes have been made

and the resultant area A* has always been found to be equal to

or larger than (_A--I + .,/A-2 )2 .

Next, the expression for the probability of collision is exam-

ined in greater detail. The probability of collision is illustrated

in figure 7, which graphs PC as a function of H using the values

A* = 500 m2, ¢_T = 2 km, and Veqv is represented parametrically
from 1 to 20 km.

From an examination of equation (9) and figure 7, the
following conclusions can be drawn:

(1) The value of PC is directly proportional to A* and is

inversely proportional to c T.

(2) The value ofP C declines monotonically with increasing
values of H.

(3) The term PC is a function of the combined covariance
matrix of objects 1 and 2 only.

(4) The value OfVeqv that results in the highest probability of
collision when H = 0 results in the lowest probability of
collision as H increases.

(5) The probability of collision falls off most rapidly with

increasing H for small values of Veq v.

By differentiating the expression for Pc with respect to Veqv

and equating the result to zero (providing that Vex]v _: 0 and
H _ 0), it is easily seen that the maximum probability of

collision occurs when Veqv = H. Substituting H for Veq v then
yields the maximum probability of collision:

e -05 A*

(PC)max- 2r_ CrTH
(32)

Thus, it is seen that the maximum probability of collision depends

only on the values of A*, a T, and H, where H = Ve_v > 0.
Returning to equation (9), if H = 0, then the probability of

collision is

I A*

(PC)H=O -- 2n (YTVeqv

This equation shows that if two large objects (e.g., A* is
2000 m 2) are nominally on a collision course (H = 0) and the

combined one-sigma position errors in the x- and y-directions

are both only 0.5 km, then the probability of collision is still less
than 13 in 10 000.

,?
=

t-
._o

8

.Q

.Q
2
0..

Equivalent 1-sigma
10-04 -- position error measured in

y-direction of RMCS,
10 -05 _ __..--... Veqv,

:_-_-.=_" _---" _,,='-,z__._.._-.__.,,.,..,,,,_ _._ km
10 -06 -- \ _ _ __-_ -_-'= ---__"-- -- -- 20

10-07 _ _ _ ""_'" _. - .... 15

10-08 _-i "_" _ _ __ ""'"" "" 10
10-09

10-10

10-11 -- / 1 XX
10-12 _,,5

10-13 I I I I I I f I I I I I I I \1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Miss distance, H, km

Figure 7.--Probability of collision PC versus miss distance H. Area of region R*, A*,
500 m2; 1-sigma position error measured in x-direction of RMCS, ¢'T, 2 km.
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Application of Results to Collision Avoidance (COLA)
Analysis

To use the probability of collision equation to perform a

COLA analysis, ideally this procedure would be followed:

(1) Propagate the trajectories of a space object and the

launch vehicle to the point of closest approach based on an
assumed launch vehicle liftoff time.

(2) Determine the nominal closest approach distance H.

(3) Compute the transformation matrix M to convert from

the coordinate system used for the state vector propagation into
the RMCS.

(4) Determine the covariance matrices of both objects at the

time of closest approach.

(5) Transform the covariance matrices associated with both

conjuncting objects into the RMCS.
(6) Reduce the 3×3 covariance matrices to 2x2 covariance

matrices by deleting the row and column corresponding to the
z-direction.

(7) Add the two covariance matrices to determine a T and Veqv.
(8) Compute or assume a value for the areaA* by assuming

some knowledge of the type of space object in close conjunc-
tion with the launch vehicle.

(9) Use equation (9) to compute the probability of collision.

(10) If the probability of collision is larger than some prede-

termined threshold value, launch would not be attempted at the

liftoff time assumed in step 1.

One modification to this procedure may be necessary. As was

mentioned previously, liftoff may not occur at the exact time

assumed in step 1 because of a tolerance that may be as large as

several seconds. Any error in the iiftoff time results in the

launch vehicle arriving at a specific point in space either early

or late. With space objects potentially traveling at a velocity of

10 km/s, the actual miss distance could be substantially less
than that computed in step 2. Some methods for dealing with

this problem follow:

( I ) Reduce the miss distance H as computed in step 2 by the

worst-case distance that a space object could travel if launch

occurred at the extreme ends of the tolerance range. For

example, if the tolerance is +2 s and the maximum space object

velocity is 10 kin/s, reduce the computed H by 20 km. This is
equivalent to the approach taken lor Cassini as described in

more detail in appendix A.

(2) Use method 1but instead of assuming that the velocity of

the space object is 10 km/s, assume the worst-case velocity at

the altitude of the conjunction. With this method, H would be

reduced by a lesser amount for conjunctions that occur at higher
altitudes.

(3) Perform a COLA analysis over small time increments
covering the entire liftoff time tolerance range. If the probabil-

ity criterion were to be violated at any time within the tolerance

range, no launch attempt would be made at the corresponding
nominal liftoff time.

The preceding discussion assumes that the covariance matrices

for both objects are known. The next section discusses a

procedure that can be used if one or both covariance matrices
are not known.

Collision Avoidance Analysis With Unknown Covariance
Matrices

When the covariance matrix for one or both of the objects is

unknown, the procedure for calculating the probability of col-

lision, as given in the previous section, is not possible and a

different approach is suggested. This section shows that it is

possible to determine a minimum miss distance which will ensure
that the probability of collision is less than some desired value

regardless of the position errors or correlations of either object.

The first step in this analysis is to solve equation (9) for H,

yielding the following result:

[1 2 \_ ( 2_PcCYTVeqv

Hmin = _/-2"0Veqv )[In(" -A-'_ )]
(33)

For any given covariance matrix, this equation gives the mini-

mum nominal separation distance nmi n required for any speci-

fied value of Pc" If the nominal separation distance is greater

than Hmi n, the probability of collision will be less than Pc.
Equation (33) is shown graphically in figure 8 using the

following numeric values: Pc = 1.0× 10-6, A *= 500 m2, and c T
parametrically from 2 to 10 km. Each curve in the figure

represents the variation of nmi n as a function of Veqv for a

constant value of OT' Note that for a constant c T , as Veq v is

increased the separation distance required to maintain a prob-

ability of collision of PC = l'0x10-6 first rises, reaches a

maximum, and then declines again. This maximum separation

distance is designated Hma xand by differentiating equation (33)

with respect to Veq v is found to be

Hmax = e_O.5 A
2nOTP c

This is the same as equation (32) for (Pc)max derived earlier,

only with the terms rearranged. The value OfVeqv that gives the
maximum value of lima x is designated Vma x and, recalling from

before, is equal to Hmax:

Vmax = Hmax = e.-0.5 A (34)
2_GTP C
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Figure 8.--Minimum required miss distance H. Probability of collision PC, 1.0x10-6; area of
region R*, A*, 500 m2.

Thus, ifVeq v of the combined covariance matrices of objects i

and 2 is unknown, one can assume that Veq v = Vma x. Tile

required minimum separation distance to ensure that the prob-

ability of collision be less than Pc is Hma x. The computation of

Hma x still requires knowledge of the value oft T. Under worst-
case assumptions, the absolute largest separation distance

required would be the value of Hma x when t_T assumes its
smallest possible value t3mi n. This value is designated H*:

• A*
H = e -'°5 (35)

2 rCC_rmn Pc

As long as the separation distance between the launch vehicle
and any space object is greater than H*, the probability of

collision will always be less than Pc, regardless of the values of
the launch vehicle or the space object covariance matrices. In
fact, the only time that the probability of collision will be equal

to Pc is when Veq v = Vma x and t_T = (Ymin" Using this procedure,
the only knowledge required of the two covariance matrices is

the value of t3mi n.

For Cassini (see appendix A for detailed description), the

value of (Ymin was estimated, maximum values of A* were
computed for several classes of orbiting objects, and a criterion

for Pc was established. Based on these values, the absolute
largest required nominal separation distance H* was computed

for each class of orbiting objects. Lifloff would not have been

attempted anytime that the COLA analysis revealed a violation
of the required miss distance/4*.

Alternative Approaches to Computing Probability

The foregoing sections illustrate the usefulness of deriving

an analytical expression for the probability of collision and the

insights that can be gained by examination of that expression.

An alternative might be to calculate the probability of coUision

numerically, as alluded to near the end of the section Probabil-

ity of Collision, Approach 2. Recall that equation (17) gave the

probability of collision formula that would allow the use of

commercial software for calculating the one-dimensional cu-
mulative distribution function for a standard normal distribu-

tion. It has the advantage of not requiring the simplification

highlighted in the first approach to modeling that probability of

collision, but it does require that the region R o be rectangular

and oriented in the same direction as the probability density
contour of the covariance matrix.

Several steps are required to use this alternative approach.

The first is to establish the rectangle discussed immediately

above. If the region R 0 is not already rectangular, a rectangle
meeting all the criteria can be formed to be large enough to

encompass all the true region R 0. This would be a conservative
approach because the probability obtained would be larger

(possibly much larger) than the probability that the objects

would come close enough to be within the true region R 0.
The next step is to calculate the eigenvalues using equa-

tion (12) or (14) and to obtain the angle of orientation 0 using

equation (13). Then u ", v', L', and W" can be calculated using

equations (22) and (16). Finally, the four values of the cumula-
tive distribution function can be found and combined to obtain

the (conservative) probability of collision.

The authors wish to suggest an additional approach that would

not be burdened by the requirement of a rectangular region R_

but would have a more involved setup and would be more com-

putationally expensive. Such an approach would require the

transformation of the (now arbitrary) region R 0 to R" either

using the transformation from the x,y-plane to the u,v-plane

given in equation (10) to obtain the region R" parametrically (if

R 0 is given explicitly or parametrically) or using the inverse of
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thattransformationto obtainR" implicitly (if R 0 is given
implicitly). Then, one must integrate (perhaps numerically) the

product of two standard normal density functions (for which

commercial software is available) over the region R'. Note that

the transformation referred to herein also requires the calcula-

tion of the angle 0 and the eigenvalues.

Summary of Results

A model is presented for the determination of the probability

of collision between a launch vehicle/payload combination and

any one of the many tracked objects orbiting the Earth. The

model was specifically developed for the Cassini mission

(launched in October 1997) but is clearly applicable to other
launches. It consists of a closed-form solution that shows the

effect each of the independent parameters has on the probability
of collision. The model can be applied to compute the probabil-

ity of collision throughout a daily launch window and thereby

afford the opportunity to avoid launching at those times within
that window when the probability of collision is unacceptably

high. For a given maximum probability of collision and prior

knowledge of the objects' position uncertainties, only knowl-

edge of the nominal closest approach distance is required to
make this launch/no launch decision.

Two approaches are presented for deriving this model. One

uses a practical engineering approach and the other, a more

mathematically rigorous approach. Each uses different but

equivalent simplifying assumptions, presents the material from

different points of view, and produces the same simplified

model. Using the second approach results in the development

of an expression for the magnitude of the error introduced by

the simplifying assumption.

The simplified model developed by both approaches expresses

the probability of collision as a function of

(i) A composite area related to the size of the two objects

(2) The position covariance matrices of both objects

(3) The nominal separation distance measured at the point of

closest approach

More specifically, the simplified model for the probability of
collision is shown to be

( A* "_( I ) -0.5{ H2/v_, v}
(9)

where

Veqv = VT_/1- p 2

and the variables are defined as follows:

* area of region centered at one object such that if the

center of the second object is within the region, a col-
lision results

"_ 2
_?,VT variances in the RMCS x- and y-directions of covari-

ance matrix obtained by adding the position covari-
ance matrices of the launch vehicle and orbiting object

at the point of nominally closest approach and elimi-

nating the row and column associated with the
z-direction

PT correlation coefficient of this combined 2x2 covari-

ance matrix

H nominal separation distance of two objects at the point

of closest approach

Further analysis allows the model to be used in cases when

the covariance matrices (and therefore OT, VT' and PT) are not

completely known and involves the computation of a minimum

required separation distance under worst-case assumptions

regarding the two-position covariance matrices. This modified

approach assures that as long as the nominal separation distance

is greater than the minimum required, an allowable probability
of collision will not be exceeded.

The application of these results to the Cassini mission is

provided in appendix A, which also discusses some other
factors that must be considered and addresses the impact on the

available launch window of limiting the probability of colli-

sion. Using Cassini data, an estimate of the error in this equation

resulting from the simplifying assumption of both approaches

suggests that the model is acceptable for most launches.

Glenn Research Center

National Aeronautics and Space Administration

Cleveland, Ohio, April 9, 1999
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Appendix A

Application of Probability Analysis to Cassini Mission

The analysis developed in this report was applied to the

COLA analysis for the Cassini mission. Detailed descriptions

of how the miss criteria were developed and their effect on the

launch window are described. Also presented are data for all

identified conjunctions that violated the miss criteria for the

actual day of launch. The discussion concludes with an assess-

ment of the accuracy of the probability analysis.

For the Cassini mission, accurate, reliable covariance matrices

for orbiting space objects were not available. This situation

required that the approach to be used for COLA analysis when

covariance matrices are not known was that presented in the

section Collision Avoidance Analysis With Unknown Covari-

ance Matrices. The launch/no launch decision was made by

comparing the nominal miss distance H to criteria that were
determined weeks before launch. If the distance from the launch

vehicle to all space objects exceeded the miss criteria, the launch

could proceed.
A severe schedule constraint dictated that the development of

miss criteria rely heavily on making worst-case assumptions

rather than on attempting to refine the accuracy of the data used.
Initially some concern was that the use of worst-case assump-

tions would lead to miss criteria so large that the launch

availability would be severely impacted; therefore, to maintain

launch availability, it was necessary to increase the maximum

allowed probability of collision from 1.0x 10-6 to 1.0× 10-5. It

is safe to state however, that although the miss criteria were

based on a probability of collision of 1.0xl0- 5, the numerous

worst-case assumptions that were made resulted in a consider-

ably lower actual probability of collision.

Development of Miss Criteria

In the absence of covariance data, the miss distance was

computed by using

or

H* = e -'0'5 A
2rta Pc

• A
H = 0.09653

a minPc

(35)

(36)

and by adjusting the results for a number of factors, including
the worst-case liftoff time error.

Three items had to be determined to calculate the miss

distance: ( 1) the value of Oraln, (2) suitable values of A*, and (3)

the largest acceptable collision probability PC"

Selecting a value offfmin.--To determine the value of (5min,
the conservative approach was to assume that

(Smi n = min(t_,)+ min(o2)

The best accuracy with which the position of space objects is

known depends on several factors, including the type of orbit

the object is in and the radar cross section of the object. Air

Force personnel estimated that the position error for some space

objects could be as low as 200 to 300 m. Assuming that this

position error was in the x-direction of the RMCS frame led to

the conclusion that rain (al) was 200 m.
To determine the smallest position error for the launch

vehicle, an error analysis was performed for a typical Cassini
trajectory. The analysis computed covariance matrices at fixed

times throughout the trajectory. Eigenvalues, the square root of

which represents the position errors, were computed for each

covariance matrix and the smallest eigenvalue at each time point
was selected. Examination of these data revealed that the best

position accuracy was achieved near the first main engine
cutoff(MECO 1) 13of the trajectory and that the position error at

that point was approximately 300 m. Launch vehicle position

errors increased steadily after achieving the minimum value and
eventually exceeded 1.6 km. The conservative approach, using

the minimum launch vehicle position error and assuming it to

be in the x-direction of the RMCS, resulted in a min (_2) of

300 m. Thus, combining these two results gives a O'mi n of
500 m.

Selecting values of A*.--Prior to determining a value of A*

for use in the calculation of miss distance, all space objects were

divided into the following categories:

(1) Manned objects (or objects capable of being manned)

(2) Satellites (active or decommissioned)

(3) Spent rocket bodies (including platforms)

(4) Debris

(5) Uncategorized objects or objects classified for national

security

A maximum area A l was determined for each space object

category and an additional area A 2 was determined for the
launch vehicle. Table I shows the areas used for each object

class. The area was taken to be the products of the two largest
overall dimensions. These values are based on a limited search

of available data, and based on the perceived quality or quantity

of the data reviewed, an adjustment factor was applied to
further increase the areas.

For the portion of flight subject to the COLA analysis, the

launch vehicle consisted of the Titan Stage II, the Centaur, and

13This refers to the first shutdown of the Centaur main engines that were

ignited and shut down twice during the Cassini launch.
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TABLE I.--MAXIMUM CROSS-SECTIONAL AREAS OF

VARIOUS OBJECTS

Object class Area.
n/

Area, A_

Manned objects
Satellites

Upper stages and platforms
Debris

Uncategorized and/or classified objects

Area, A 2
Launch vehicle :_

1100
300

55
10

300

100

_Consists of Titan stage II, Centaur, and the spacecraft.

TABLE II,--VALUES OF A* BY OBJECT CLASS

Object class Area, A*,
rr?

IManned objects

iSatellites

Upper stages and platforms
Debris

Uncatel_orized and/or classified objects

1863

746

3O3

173

746

TABLE III.--REQU1RED MISS DISTANCES BASED
ONLY ON PROBABILITY CALCULATIONS

Object class Minimum miss
distances,

km

Manned objects
Satellites

Upper stages and platforms
Debris

Uncategorized and/or classified objects

35.9
14A

5.9

33

14.4

TABLE IV.--REQUIRED MISS DISTANCES

AFTER ADJUSTMENTS

Object class Final minimum
miss distances,

km

Manned objects
l Satellites

I Upper stages and platforms

Debris

I Uncate_orized and/or classified oblects

20O

35
30

30
35

the spacecraft. The respective areas are approximately 30, 35,
and 35 m 2. Even though the stages are jettisoned (Titan

Stage II first and Centaur later), thereby substantially reducing
the launch vehicle size, the area of the launch vehicle was

conservatively taken to be 100 m 2 for the entire trajectory.

Given these values ofA 1and A 2, the composite areaA* was then

calculated as A = + . The resultant values of A*

are shown in table II.

Maximum allowable collision probability.--If the launch

vehicle and a space object are on trajectories that result in a zero

nominal miss distance, the probability of collision, using the

equations derived in this report, could be as high as 10-4 to

10-3 depending on the size of the space object.
For the Cassini mission, it was desired to limit the maximum

probability of collision to values less than or equal to 1.0x 10 -6.
A value of 1.0×10 -6 is consistent with values used in other

aspects of the launch approval process. However, the impact on

the launch window was unacceptably large in that nearly one-
half of the launch window was lost. Since the values chosen

for C_min and A* are extremely conservative, it was decided that
a maximum probability of 1.0xl0 -5 would be acceptable.

Computation of minimum miss distances.--The miss dis-

tance was shown in equation (36) to be

H* = 0.09653 _A (36)
(Ymin Pc

Substituting the values determined in the previous section gives

the miss distances, based purely on probability considerations

(table III).

Adjustments to minimum miss distances.--Several adjust-

ments were made to the computed minimum miss distances:

(I) The miss distance for manned objects was increased to

200 km to be consistent with the independent safety COLA

analysis performed by the Eastern Range.

(2) Any miss distances less than 10 km were increased to 10 kin.
(3) A bias of 20 km was added to all miss distances (except

that for manned objects) to account for tolerances in the iiftoff
time.

Liftoff is nominally scheduled to occur on the whole minute.
For the Cassini mission, this was subject to a tolerance of- I, +3

sec. To accommodate this tolerance, the COLA analysis was

performed for an assumed liftoff time 1 sec after the whole

minute, which (given the tolerance) meant that actual liftoff

would occur +2 s from the time analyzed. The aforementioned

bias of 20 km provides a margin of safety for spacecraft

traveling at a worst-case velocity of 10 km/s.

Table IV gives the final minimum required miss distances for

the Cassini mission and takes into account the three adjust-

ments and rounding the results. These miss distances assure a

collision probability of less than ! .0x 10- 5. However, given the

conservatism used throughout, the actual collision probabili-

ties are considerably less.

After finalizing these miss distances, the impact on launch

window was evaluated. It was estimated that on average, 12 of

141 launch opportunities per daily launch window would be
closed because of a violation of the COLA miss criteria.
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Collision Avoidance Analysis Process

The miss criteria described in the previous section were estab-

lished and approved several weeks before launch. Several days

before launch, the trajectory generation process was initiated. The

full complement of 182 daily trajectories was generated for

several launch days and stored in the computer system. Approxi-

mately 48 and 24 hr prior to the planned launch, a COLA analysis

was performed to identify those space objects that were most

likely to come within proximity of the launch vehicle. The Air

Force's 1st CACS then focused on these identified space objects

to improve the orbit prediction accuracy.

Approximately 4 hr before launch, the conjunction analyzer

was executed at Cheyenne Mountain Operations Center

(CMOC) and simultaneously at the Naval Space Command in

Dahlgren, VA. The execution time of the conjunction analyzer

at CMOC was approximately 25 min. 14 The conjunction ana-

lyzer results from both organizations were compared and

reviewed prior to transferring them electronically to the Eastern

Range.

The Eastern Range performed the postprocessing and inde-

pendently performed the safety COLA. The results of the

mission assurance and safety COLA were combined and sum-

mary charts showing the unacceptable launch times were

produced. After review and approval by the launch director, the

charts were distributed to the appropriate launch personnel

approximately 1 hr before the opening of the launch window.

Collision Avoidance Analysis Results

Table V gives the COLA analysis results for the October 15,

1997 launch of the Cassini spacecraft. For this day, the launch

window opened at 8:43 Greenwich mean time (G.m.t) and

closed at 1 1:03, giving a launch window duration of 140 min.

With launch planned to occur on the whole minute, 141 launch

opportunities were provided. For the first 40 opportunities, the

flight azimuth was 93°; for the next 41 opportunities, the flight

azimuth could be either 93 ° or 97 ° for 82 possible trajectories;

and for the last 60 opportunities, the flight azimuth was 97 ° . The

actual liftoff time was 8:43:0.582, which was 0.582 sec later

than the targeted liftoff time but well within the tolerance.

The COLA analysis identified 17 trajectories for which the

preestablished miss criteria were violated. These 17 trajectories

affected 14 of 141 launch opportunities. Of the 14 launch

opportunities affected, 3 occurred during a time in the launch

window when either a 93 ° or 97 ° launch azimuth was possible.

Each of the 17 trajectories that violated the miss criterion

involved only a single conjunction with an orbiting space object

that exceeded the allowable probability of collision. For each

identified conjunction, table V lists some of the data of interest,

including the class of object involved, the flight azimuth, the

time from liftoff when the conjunction would have occurred,

the predicted nominal miss distance, the flight phase, and the

altitude.

Lifioff

time,
G.m.t.

8:46
8:47
8:49
8:54
9:10
9:29
9:30

9:38

9:44

Object class

Satellite
Debris
Debris
Debris

Unidentified object
Satellite
Debris

Classified object

MIR Space Station

TABLE V.-- COLA RESULTS FOR OCTOBER 15, 1997
[Arranged chronologically with time into launch window.

10:06 Debris 30

10:12 Satellite 35
10:16 Rocket body 30
10:33 Debris 30
I 1:02 Satellite 35

1, Centaur first burn; 2, park orbit; 3, Centaur second burn; 4, between Centaur second main engine
vehicle separation.

Flight Mission elapsed Miss Nominal Phase of

azimuth, time of closest criteria miss flight a
deg approach, km distance,

s km

93 2250.208 35 32.2 4
93 2221.969 30 13.6 4
93 2297.930 30 17.7 4
93 2326.872 30 13.3 4
93 2194.960 35 2g).6 4
93 1376.469 35 27.2 2
93 2199.076 30 5.1 4
97 2198.463 8.7 4
93 2195.403 35 30.8 4
97 2194.295 27.0 4
93 1801.334 200 172.0 3
97 1799.714 171.4 3
97 2133.053 27.4 4
97 1985.984 34.6 4
97 1306.811 18.3 2
97 1868.192 13.1 4
97 2065.356 28.3 4

Altitude of
potential
collision,

km

639.2
572.5
813.6
970.0
697.0
171.0
912.7
914.7
988.5
989.9
222.6
224.2

1084.5
640.6
170.0
490. i

1473.6

Launch vehicle/

space vehicle
relative velocity,

km/s

11.4
11.5
11.3
11.2
11.4
7.9

11.3
11.3
11.2
11.2
9.5
93

11.1
11.4
7.9

11.5
10.9

cutoff and space

J4The conjunction analyzer was executed on a Silicon Graphics work-

station (Octane/SI) with a 175-MHz R10000 CPU, 192-MB memory, and
13-GB hard disk.
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Figure 9.---October 15 Cassini launch window. Darkened areas represent times during which launch is not allowed

because of risk of collision with orbiting object.

TABLE Vi.-- ASSUMPTIONS RELATED TO OBJECT SIZES

Object class Area of

region R',
A*,

n/

Length of sides of

rectangular region

R o along direction

given by 0,
t*,

m

Manned Objects 1863
Satellites" 746

Upper stages and platforms 303
Debris 173

"Includes uncategorized and classified objects.

61.0

38.6

24.6

18.6

Length of sides of

rectangular region

R o along direction

given by 0 + 90 °
W',

m

30.5

19.3

12.3

9.3

TABLE VII.--VALUES USED TO COMPUTE THE BOUND OF IRr[

Terms related to

maximum error

C z, m

v r, m

For p=0
_,_+ m:

_+, m 2

A °, m"

For p
X,

A n,

= 0.50

m 2

m 2

m 2

Manned objects

500

35 900

1.29x109

2.50x10 s

5.64x107

1.29x109

1.87x10 s

4.88x 107

Satellites

500

14 400

2.07x10 _

2.50x10 s

2.26x107

2.07x10 s

1.87x10 -s

1.96x107

Upper stages

and platforms

500

5900

3A8xl_

2.50x1_

9.27xl&

3.49xl07

!.87x!¢

8.03x1_

For p =0.9o

X+, m 2
Aam -_

For p = 0.95
, me

_+, m 2
A a, m-'

I._xl_

4.75xl&

2.46x1_

1.29x109

2.44x104

1.76x107

2.08xl0 s

4.75xl04

9.86xi06

2.08x1_

2.43x1_

7.06x1_

3.50x107

4.72x1_

4.04x1_

3.50x!_

2A2xi_

2.89x1_

Debris

5O0

3300

i.09xl_

2.50x1_

5.18x1_

l.lOxlO 7

I._xl_

4.49x1¢

l.llxl_

4.66x1_

2.26x1_

l.llxl_

2.39x1_

l._xl_

TABLE VII1.--UPPER BOUNDS OFIR FOR CASSINI

Object class p = 0 p = 0.5() p = 0.90 p = 0.95

Manned objects 1.02x10 -_ 1.58x104 1.24x10 -r '3.37xl0 -7

Satellites 4.10x10 -9 6.31x10 -_ 4.95x104 1.35x10 -7

Upper stages and platforms 1.65xl0 -9 2.55xl0 -'_ 2.00x104 5.45x10 -_
Debris 9.68xl04° 1.50xlO -9 1.18xlO _ 3.23xl0 m
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Of the 17 possible conjunctions identified for an October 15

launch, 2 occurred in park orbit, 2 occurred during the Centaur

second main engine burn, and the remaining 13 occurred after
the second Centaur main engine cutoff (MECO2) but before

spacecraft separation. In terms of altitude, the identified con-

junctions occurred between 170 and 1474 km.

Figure 9 illustrates the effect of COLA closures on the launch

window. The bar represents the entire 140-min launch window;

the shaded areas represent lost launch opportunities due to a

potential for collision with an orbiting object.

Accuracy Assessment of Cassini Probability Calculations

The miss distances established for the Cassini mission and

shown in table III are based on a maximum allowable probabil-
ity of collision of 1.0xl0 -5. This section uses equation (31) to

address the error in that probability value. The maximum error

is a function of terms related to the covariance matrices and to

terms related to the object sizes. That the object sizes affect the

error term means that the error will be different for each object

class. The following sections define the values used to compute

the magnitude of the bound for IR/_.
Assumed values for L *, IV*,and A *.--Table II gives the values

of A* for each object class. The values of L* and W* are derived

by assuming somewhat arbitrarily that L* = 2(W*). With this

assumption, the values shown in table VI are obtained.

Assumed values for A _, _,+, and __.--Recall that the value

of (_T assumed for the Cassini analysis was 500 m. Recall also

from equation (34) that the value of v T = Vmax = Hma x. The
value of Hma x is the required miss distance given in table III.

Thus, using these values ofcTand VTand treating the unknown

correlation parametrically yields from equation (I 2) the values

of _,_ and _,+ shown in table VII. (Note that the + in equa-

tion (12) had to be reversed because v T is greater than cT, as

discussed in the text preceding equation (13).) Then, applying
equation (29) gives the values ofA a shown in table VII.

Computation of the upper bound for IRl_.--Substituting the

values from tables VI and VII into equation (31) gives the

results shown in table VIII. Note that since vTis greater than a T,
the minor axis of the probability contour is along the direction

given by 0. The dimension of the rectangular region R 0 that is
along the direction given by 0 is by definition L*. Since the

orientation of the rectangle is unknown, L* can be taken to be

either the long or the short side of the rectangle. As an added

measure of conservatism, the length of L* was taken to be the
:¢

larger of the two sides; thus, the long side of the region R 0 is
parallel to the minor axis of the probability density contour.

This yields the largest value of IR/_ bound.
All the errors shown in table VIII are with respect to a

probability of collision Pc of 1.0×10 -5. As can be seen, under

worst-case conditions, combining the largest space object with

the largest value of correlation and assuming that the long side
of the rectangle is at right angles to the semimajor axis of the

error ellipse, the error is 3.37×10 -7 . This represents approxi-

mately 3.4 percent of the probability of collision.

Values of the correlation of the covariance matrix _, which

is the sum of the two independent covariance matrices of the

launch vehicle and the space object, are usually not expected to

be as large as 0.95. For this reason and given the large number

of conservative assumptions made in the derivation of equation
(3 I) and in the computation of the values shown in table VIII,

it may be concluded that the errors in equation (9) are generally
smaller than those given in the last column of table VIII.

NASA/TP-- 1999-2088"52 25



A*

A"

A o

Al

A 2

D

H

H*

Hmax

nmin

L,

L"

M

N

P

Appendix B

Symbols

area of region R* that is a function ofAp A 2 and the

shape and orientation of the two objects

area of region R"

area ofellipse defined by equation [ x y]Z-I[_] = 1

area of object 1 projected into x,y-plane of relative

motion coordinate system (RMCS)

P

Pc

Pu, Pv

R*

area of object 2 projected into x,y-plane of RMCS R"

diagonal matrix, elements of which are square roots

of eigenvalues of Y, R 0

nominal separation distance between two objects at

point of closest approach
R T

value of lima x when _T = O'rnin

maximum value of Hmi n for given value of (_T over

the range of 0 <_Veqv < oo (The value of lima xoccurs

when Veqv = Hmax. )

U,V

minimum separation distance required to ensure that

probability of collision be less than Pc for any
given covariance matrix

length of sides of rectangular region R 0 along direc-

tion given by 0

U,V

length of sides of rectangular region R" in u-direction

3×3 matrix that transforms from inertial coordinates to

the RMCS

W"

X,Y,Z

orthonormal matrix whose columns are the normal-

ized eigenvectors of E and whose transpose is used

to rotate R 0 x,y,z

probability of collision of an orbiting space object

with a launch vehicle and/or spacecraft

0

probability of collision of an orbiting space object

with a launch vehicle and/or spacecraft ifa constant

probability density function is assumed

maximum value of Pc for given value of (3"T and A*

standard normal cumulative distribution functions

probability density function

collision probability density

standard normal probability density functions

region ofx,y-plane surrounding one object such that

if center of second object is within the region, a
collision will result

region R 0, after translation by (0,-H), rotation by
N T, and rescaling by D -l

region R* translated to the origin

remainder term in Taylor expansion of probability
of collision formula

time

standard normal random variables obtained after

translation, rotation, and rescale of random vari-
ables X, Y

coordinates in plane obtained after translation, rota-

tion, and rescale of x,y-plane

coordinates of center of rectangular region R"

length of sides of rectangular region R 0 along direc-
tion given by 0 + 90 °

length of sides of rectangular region R" in v-direction

random variables that map trajectory event space to

x-,y-, and z-values of relative location of two objects
in RMCS

coordinates in RMCS

angle between x-axis and semimajor (or semiminor)

axis of probability contour of Z, as well as orien-

tation of two sides of rectangular R 0 with respect to
x-axis

eigenvalues ofr_ with L+ the value associated with

eigenvector along direction given by 0 and _,_ the

value associated with eigenvector along direction

given by 0 + 90 °
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Veqv

V I

V2

PT

Pl

P2

equivalent l-sigma position error measured in
y-direction of RMCS which, combined with a cor-

relation of zero, would yield same probability of

collision as v T combined with PT

(reqv =V

value of Veq v at which Hmi n is a maximum

1-sigma error of relative positions of object 1 and

object 2 measured in y-direction of RMCS,

l-sigma position error of object ! measured in
y-direction of RMCS

1-sigma position error of object 2 measured in
v-direction of RMCS

correlation between (YT and v T

correlation between (3"I and v I

correlation between 02 and v2

Y_

Omin

(3"T

O 1

(3 2

(o)T

I°1

(.)-t

V

2×2 covariance matrix of marginal distribution

associated with random variables X and Y, variances
2

_3T, v_, and correlation PT

minimum value of (YT

I-sigma error of relative positions of object 1 and

object 2 measured in x-direction of RMCS

/
l-sigma position error of object 1 measured in
x-direction of RMCS

I-sigma position error of object 2 measured in
x-direction of RMCS

transpose of a matrix

absolute value of a scalar or determinant of a matrix

reciprocal of a scalar or inverse of a matrix

such that

for all
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